21 resultados para G-CSF

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is a key regulator of granulopoiesis via stimulation of a specific cell-surface receptor, the G-CSF-R, found on hematopoietic progenitor cells as well as neutrophilic granulocytes. It is perhaps not surprising, therefore, that mutations of the G-CSF-R has been implicated in several clinical settings that affect granulocytic differentiation, particularly severe congenital neutropenia, myelodysplastic syndrome and acute myeloid leukemia. However, other studies suggest that signalling via the G-CSF-R is also involved in a range of other malignancies. This review focuses on the molecular mechanisms through which the G-CSF-R contributes to disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the observations in the 1960s that granulocyte-colony stimulating factor (G-CSF) stimulated the proliferation of granulocytic cells in semisolid cultures of bone marrow cells, G-CSF has established itself as a useful clinical agent for increasing levels of neutrophilic granulocytes. However, these early findings did not firmly establish whether G-CSF is a genuine regulator of granulocyte formation under normal physiological conditions or rather acts as an emergency regulator, playing an important role only under stress conditions. The advent of <gene-knockout technology> has allowed us to evaluate these questions in a physiological setting through analysis of mice with a targeted mutation of G-CSF or its receptor, while the development of relevant cell models has enabled us to dissect the molecular basis of G-CSF action. This review discusses our current state of knowledge regarding the role of G-CSF in granulopoiesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of neutrophil production. Studies in cell lines have established that conserved tyrosines Y704, Y729, Y744, Y764 within the cytoplasmic domain of G-CSF receptor (G-CSF-R) contribute significantly to G-CSF-induced proliferation, differentiation and cell survival. However, it is unclear whether these tyrosines are equally important under more physiological conditions. Here, we investigated how individual G-CSF-R tyrosines affect G-CSF responses of primary myeloid progenitors. We generated GCSF- R deficient mice and transduced their bone marrow cells with tyrosine "null" mutant (mO), single tyrosine "add back" mutants or wild type (WT) receptors. G-CSFinduced responses were determined in primary colony assays, serial replatings and suspension cultures. We show that removal of all tyrosines had no major influence on primary colony growth. However, adding back Y764 strongly enhanced proliferativeresponses, which was reverted by inhibition of ERK activitity. Y729, which we found to be associated with the suppressor of cytokine signaling, SOCS3, had a negative effect on colony formation. After repetitive replatings, the clonogenic capacities of cells expressing mO gradually dropped compared to WT. The presence of Y729, but also Y704 and Y744, both involved in activation of STAT3, further reduced replating
efficiencies. Conversely, Y764 greatly elevated the clonogenic abilities of myeloid progenitors, resulting in a >104–fold increase of colony forming cells over mO after the fifth replating. These findings suggest that tyrosines in the cytoplasmic domain of G-CSF-R, although dispensable for G-CSF-induced colony growth, recruit signaling mechanisms that regulate the maintenance and outgrowth of myeloid progenitor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess cooperation between G-CSF signals and C/EBP, we characterized Ba/F3 pro-B cell lines expressing C/EBPWT-ER and the G-CSF receptor (GCSFR). In these lines, GCSFR signals can be evaluated independent of their effect on C/EBP levels. G-CSF alone did not induce the MPO, NE, LF, or PU.1 RNAs, and C/EBPWT-ER alone stimulated low-level MPO and high-level PU.1 expression. Simultaneous activation of the GCSFR and C/EBPWT-ER markedly increased MPO and NE induction at 24 h, and LF mRNA was detected at 48 h. G-CSF did not increase endogenous GCSFR, endogenous C/EBP or exogenous C/EBPWT-ER levels, and C/EBPWT-ER did not induce endogenous or exogenous GCSFR. Several GCSFR mutants were also co-expressed with C/EBPWT-ER. Mutation of all four cytoplasmic tyrosines prevented NE induction but enhanced MPO induction. Mutation of Y704 was required for increased MPO induction. Consistent with this finding, removing IL-3 without G-CSF addition enabled MPO, but not NE, induction by C/EBPWT-ER. GCSFR signals or related signals from other receptors may cooperate with C/EBP to direct differentiation of normal myeloid stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the intracellular distribution and internalization kinetics of the granulocyte colony-stimulating factor receptor (G-CSF-R) in living cells using fusion constructs of wild-type or mutant G-CSF-R and enhanced green fluorescent protein (EGFP). Under steady-state conditions the G-CSF-R localized predominantly to the Golgi apparatus, late endosomes, and lysosomes, with only low expression on the plasma membrane, resulting from spontaneous internalization. Internalization of the G-CSF-R was significantly accelerated by addition of G-CSF. This ligand-induced switch from slow to rapid internalization required the presence of G-CSF-R residue Trp650, previously shown to be essential for its signaling ability. Both spontaneous and ligand-induced internalization depended on 2 distinct amino acid stretches in the G-CSF-R COOH-terminus: 749-755, containing a dileucine internalization motif, and 756-769. Mutation of Ser749 at position –4 of the dileucine motif to Ala significantly reduced the rate of ligand-induced internalization. In contrast, mutation of Ser749 did not affect spontaneous G-CSF-R internalization, suggesting the involvement of a serine-threonine kinase specifically in ligand-accelerated internalization of the G-CSF-R. COOH-terminal truncation mutants of G-CSF-R, found in severe congenital neutropenia, lack the internalization motifs and were completely defective in both spontaneous and ligand-induced internalization. As a result, these mutants showed constitutively high cell-surface expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatostatin, originally identified as a peptide involved in neurotransmission, functions as an inhibitor of multiple cellular responses, including hormonal secretion and proliferation. Somatostatin acts through activation of G-protein-coupled receptors of which five subtypes have been identified. We have recently established that human CD34/c-kit expressing hematopoietic progenitors and acute myeloid leukemia (AML) cells exclusively express SSTR2. A major mechanism implicated in the antiproliferative action of somatostatin involves activation of the SH2 domain-containing protein tyrosine phosphatase SHP-1. While 0.1-1 x 10(-9) M of somatostatin, or its synthetic stable analog octreotide, can inhibit G-CSF-induced proliferation of AML cells, little or no effects are seen on GM-CSF- or IL-3-induced responses.
MATERIALS AND METHODS: To study the mechanisms underlying the antiproliferative responses of myeloblasts to somatostatin, clones of the IL-3-dependent murine cell line 32D that stably express SSTR2 and G-CSF receptors were generated. RESULTS: Similar to AML cells, octreotide inhibited G-CSF-induced but not IL-3-induced proliferative responses of 32D[G-CSF-R/SSTR2] cells. Somatostatin induced SHP-1 activity and inhibited G-CSF-induced, but not IL-3-induced, activation of the signal transducer and activator of transcription proteins STAT3 and STAT5.
CONCLUSION: Based on these data and previous results, we propose a model in which recruitment and activation of the tyrosine phosphatase SHP-1 by SSTR2 is involved in the selective negative action of somatostatin on G-CSF-R signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte-Colony Stimulating Factor (G-CSF) is a commercially available drug with research linking it to favourable muscle adaptations, post trauma. Molecular techniques were used to identify the G-CSF receptor in skeletal muscle and G-CSF treatment was used to determine the molecular mechanisms by which G-CSF enhances muscle growth and regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte-colony stimulating factor (G-CSF) increases recovery of rodent skeletal muscles after injury, and increases muscle function in rodent models of neuromuscular disease. However, the mechanisms by which G-CSF mediates these effects are poorly understood. G-CSF acts by binding to the membrane spanning G-CSFR and activating multiple intracellular signaling pathways. Expression of the G-CSFR within the haematopoietic system is well known, but more recently it has been demonstrated to be expressed in other tissues. However, comprehensive characterization of G-CSFR expression in healthy and diseased skeletal muscle, imperative before implementing G-CSF as a therapeutic agent for skeletal muscle conditions, has been lacking. Here we show that the G-CSFR is expressed in proliferating C2C12 myoblasts, differentiated C2C12 myotubes, human primary skeletal muscle cell cultures and in mouse and human skeletal muscle. In mdx mice, a model of human Duchenne muscular dystrophy (DMD), G-CSF mRNA and protein was down-regulated in limb and diaphragm muscle, but circulating G-CSF ligand levels were elevated. G-CSFR mRNA in the muscles of mdx mice was up-regulated however steady-state levels of the protein were down-regulated. We show that G-CSF does not influence C2C12 myoblast proliferation, differentiation or phosphorylation of Akt, STAT3, and Erk1/2. Media change alone was sufficient to elicit increases in Akt, STAT3, and Erk1/2 phosphorylation in C2C12 muscle cells and suggest previous observations showing a G-CSF increase in phosphoprotein signaling be viewed with caution. These results suggest that the actions of G-CSF may require the interaction with other cytokines and growth factors in vivo, however these data provides preliminary evidence supporting the investigation of G-CSF for the management of muscular dystrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte-colony stimulating factor (G-CSF) has been demonstrated to enhance skeletal muscle recovery following injury and increases muscle function in the context of neuromuscular disease in rodent models. However, understanding of the underlying mechanisms used by G-CSF to mediate these functions remains poor. G-CSF acts on responsive cells through binding to a specific membrane spanning receptor, G-CSFR. Recently identified, the G-CSFR is expressed in myoblasts, myotubes and mature skeletal muscle tissue. Therefore, elucidating the actions of G-CSF in skeletal muscle represents an important prerequisite to consider G-CSF as a therapeutic agent to treat skeletal muscle. Here we show for the first time that treatment with moderate doses (4 and 40ng/ml) of G-CSF attenuates the effects of dexamethasone in reducing protein synthesis in C2C12 myotubes. However, a higher dose (100ng/ml) of G-CSF exacerbates the dexamethasone-induced reduction in protein synthesis. In contrast, G-CSF had no effect on basal or dexamethasone-induced protein degradation, nor did G-CSF influence the phosphorylation of Akt, STAT3, Erk1/2, Src, Lyn and Erk5 in C2C12 myotubes. In conclusion, physiologically relevant doses of G-CSF may attenuate reduced skeletal muscle protein synthesis during catabolic conditions, thereby improving recovery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in the granulocyte colony-stimulating factor receptor (G-CSF-R) gene leading to a truncated protein have been identified in a cohort of neutropenia patients highly predisposed to acute myeloid leukemia. Such mutations act in a dominant manner resulting in hyperproliferation but impaired differentiation in response to G-CSF. This is due, at least in part, to defective internalization and loss of binding sites for several negative regulators, leading to sustained receptor activation. However, those signaling pathways responsible for mediating the hyperproliferative function have remained unclear. In this study, analysis of an additional G-CSF-R mutant confirmed the importance of residues downstream of Box 2 as important contributors to the sustained proliferation. However, maximal proliferation correlated with the ability to robustly activate signal transducer and activator of transcription (STAT) 5 in a sustained manner, whereas co-expression of dominant-negative STAT5, but not dominant-negative STAT3, was able to inhibit G-CSF-stimulated proliferation from a truncated receptor. Furthermore, a Janus kinase (JAK) inhibitor also strongly reduced the proliferative response, whereas inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) or phosphatidylinositol (PI) 3-kinase reduced proliferation to a lesser degree. These data suggest that sustained JAK2/STAT5 activation is a major contributor to the hyperproliferative function of truncated G-CSF receptors, with pathways involving MEK and PI 3-kinase playing a reduced role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of granulopoiesis and acts through binding to its specific receptor (G-CSF-R) on neutrophilic granulocytes. Previous studies of signaling from the 4 G-CSF-R cytoplasmic tyrosine residues used model cell lines that may have idiosyncratic, nonphysiological responses. This study aimed to identify specific signals transmitted by the receptor tyrosine residues in primary myeloid cells. To bypass the presence of endogenous G-CSF-R, a chimeric receptor containing the extracellular domain of the epidermal growth factor receptor in place of the entire extracellular domain of the G-CSF-R was used. A series of chimeric receptors containing tyrosine mutations to phenylalanine, either individually or collectively, was constructed and expressed in primary bone marrow cells from G-CSF-deficient mice. Proliferation and differentiation responses of receptor-expressing bone marrow cells stimulated by epidermal growth factor were measured. An increased 50% effective concentration to stimulus of the receptor Ynull mutant indicated that specific signals from tyrosine residues were required for cell proliferation, particularly at low concentrations of stimulus. Impaired responses by mutant receptors implicated G-CSF-R Y764 in cell proliferation and Y729 in granulocyte differentiation signaling. In addition, different sensitivities to ligand stimulation between mutant receptors indicated that G-CSF-R Y744 and possibly Y729 have an inhibitory role in cell proliferation. STAT activation was not affected by tyrosine mutations, whereas ERK activation appeared to depend, at least in part, on Y764. These observations have suggested novel roles for the G-CSF-R tyrosine residues in primary cells that were not observed previously in studies in cell lines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2-D SDS-PAGE) of 32P-labeled cytosolic and membrane extracts, we identified a 21.5 kDa phosphoprotein with an isoelectric point of 6.0 in NFS-60 cells that was phosphorylated maximally at 15 min by treatment with granulocyte-colony stimulating factor (G-CSF) but not with interlevkin-3 (IL-3) or colony-stimulating factor-1 (macrophage-colony stimulating factor (CSF-1 (M-CSF)). The phosphorylation of this protein, designated 21.5/6.0, was unaffected by a series of antiproliferative agents [32]. These findings suggested that the 21.5/6.0 phosphoprotein may be involved in specific G-CSF-mediated biological responses such as activation and/or differentiation. We sought to characterize this 21.5/6.0 by a novel combination of 2-D SDS-PAGE and hydroxyapatite (HTP)-chromatography. Amino acid sequence determination of 21.5/6.0 revealed it to share a high level of homology with copper/zinc superoxide dismutase (Cu/Zn-SOD), indicating that a Cu/Zn-SOD is phosphorylated following treatment with G-CSF. This is the first report of the phosphorylation and possible involvement of Cu/Zn-SOD protein in granulocyte activation/differentiation events. In addition, Cu/Zn-SOD levels and activity were diminished by G-CSF but not IL-3 treatment. This new protocol combining 2-D SDS-PAGE and HTP-chromatography allows the characterization of low abundance phosphoproteins involved in the cellular responses to G-CSF and presumably to other cytokines/growth factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most severe congenital neutropenia (SCN) cases possess constitutive neutrophil elastase mutations; a smaller cohort has acquired mutations truncating the granulocyte colony-stimulating factor receptor (G-CSF-R). We have described a case with constitutive extracellular G-CSF-R mutation hyporesponsive to ligand. Here we report two independent acquired G-CSF-R truncation mutations and a novel constitutive neutrophil elastase mutation in this patient. Co-expression of a truncated receptor chain restored STAT5 signalling responses of the extracellular G-CSF-R mutant, while constitutively-active STAT5 enhanced its proliferative capacity. These data add to our knowledge of SCN and further highlight the importance of STAT5 in mediating proliferative responses to G-CSF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The granulocyte colony-stimulating factor receptor (G-CSFR) plays an important role in the production, survival and activation of neutrophilic granulocytes during both normal and emergency hematopoiesis. The G-CSFR also participates in the development of other myeloid lineages, the mobilization of hematopoietic stem cells and myeloid cell migration. This has lead to several important clinical applications for its ligand, G-CSF. More recently, additional important roles for G-CSFR have emerged outside the hematopoietic system, such as in the protection and repair of a diverse range of tissues, including muscle, liver and neural tissue, providing further scope for developing G-CSF as a therapeutic agent. The G-CSFR has also been implicated in the etiology of disease, with mutations/variants of G-CSFR implicated in neutropenia, myelodysplasia and leukemia. Additionally, autocrine/paracrine stimulation of G-CSFR may be important in the biology of solid tumors, including metastasis.